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We give a sketch of a rigorous foundation for the model for a symmetrical
theory of generalised functions introduced earlier by the second author. On
starting with a suitable subspace PC of the space S' of tempered distributions,
we introduce a space SGF of "new" generalised functions as a space of linear
functiona]s on PC. Both on PC and SGF we have all the usual operations
including a product. On PC this product operation is somewhat arbitrary but

on SGF it is canonical and much nicer. Finally, PC and SGF are put together
into a space GF of linear functionals on SGF.

1. Introduction

Distribution theory arose out of the need to give a rigorous foundation
to objects such as the delta function, which were used before in a heuristic
way. In order to apply Fourier techniques, the space S' of tempered distribu-
tions was introduced. When S' is compared with other spaces invariant under
the Fourier transform 1ike S or L2(R) then some simple formal properties are
missing in the theory of S' like a scalar product S' x S8' - € or an ordinary
product S' x S' + S'.These shortcomings are sometimes bothersome in applications
of distribution theory in mathematics or physics.

In [7] a symmetrical theory of generalised functions was designed by the
second author in order to combine the desirable features of distribution
theory and Lz—theory. Here by "symmetrical" we mean that there is no longer
a distinction between test functions and distributions, but that a scalar
product exists on the space of generalised functions constructed in [7].
Applications of this theory to quantum electrodynamics were given in [81. While
the presentation of the theory in [7]1 was heuristic, here we give a sketch of
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a rigorous approach. Proofs are omitted; these will appear in a later paper.
The construction proceeds in several steps. In order to show the similari-
ties and differences with distribution theory the subspace SGF of '"new" general-
ised functions is introduced as a space of Tinear functionals on a suitable
subspace PC of S', in such a way that it is closed under the usual operators.
On PC we define a non-associative product following Keller [41, [5], [6]. (This
was earlier done in [7], but there the point singularities remained unspecified
because of indeterminacy.) On SGF, being a bidual of S, a canonical product
is inherited from S. The formal properties of the product on SGF are much nicer
than on PC. There is also a lot of arbitrariness in the choice of the product
on PC. The paper concludes with a synthesis of PC and SGF into a space GF of
linear functionals on SGF. The theory of the space GF, when viewed as its own
dual, may be shown to coincide with the symmetrical theory of generalised func-
tions in [71. Throughout the paper, "distributions" will be understood in the
sense of Schwartz.

2. The Preliminary Class PC

Let S be the space of rapidly decreasing C”-functions on R, equipped
with the usual topology. Below we 1ist a number of continuous 1inear endomor-
phisms of S by their action on elements ¢ of S:

(2.1)  (0e)(x) := LX),

(2.2)  (Xe)(x) := x6(x),

(2.3)  (e®%9)(x) := o(x+a), ac R,
(2.4)  (e™)(x) := e™5(x), b R,
(2.5) (Sco)(x) := ¢(cx), c >0,
(2.6)  (Fo)(x) := J7_ o(e)e” e,
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In (2.3) and (2.4) the power series 7, a* D*/k! and 1, (ib)* ¥k 6/k! do not
converge in S for all ¢, only on a dense subspace of analytic functions.
There are many well-known identities involving the operators defined above.

Here we only mention:

(2.10) DX - XD = I,

(2.11) )

iXF,
(2.12) 2 = 24P,

(2.13) FL o (2n) tpr,
(2.14) Floxu) = (Fo)(Fv),

(2.15) D(¢w) = (Do) + ¢(Dw).

Consider also the integration functional I and the evaluation functional
E, both continious on S:

(2.16) I(¢) :

JZ . e(g)de,

(2.17) E(¢) := 4(0).

They satisfy

(2.18) I(¢) = E(Fe),

(2.19)  I(ew) = I(Fe)(F ly).

Let S' be the space of tempered distributions, i.e. of all continuous
Tinear functionals on S. Generally, if V is a linear space and V' its dual
space then we will write <f,¢> for the linear functional f ¢ V' evaluated at
¢ e V. There is an embedding S - S' such that

(2.20) <ps¢> = [T u(x)e(x)dx, ¥, ¢ € S.

If A is any of the operators defined by (2.1)-(2.9) then there is a unique
continuous linear operator A': S -~ S such that
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(2'21) <Ay, 6> = <P A'e>, v, ¢ €S,
and there is an extension of A to S' (also denoted by A) such that
(2.22) <Af,p> = <f,A'¢>, feS', ¢ eS.

For a e 0, qe Z_we define the element xi(]og x+)q of $' as a Hadamard
finite part:

at+h
(

-1 o
(2.23) <x%(log x,)%,6> 1= Res,_\"'AC [§ o(x)x*"(Tog x)%dx,

where AC means analytic continuation and Resk=0 the residue at x» = 0. Also:

(2.24) xf(]og x_)q 1= P(xi(]og x+)q),

Kponk

(2.25) <6k g = (-1K0%6)(0) = (-1)RE(D%), ke Z

.
The Tinear span of the elements xi(]og xt)q and a(k) is invariant under D, X,
Sc’ F, P (see [3] for explicit formulas).

let thepreliminary c1ass PCbe the smallest linear subspace
of S' which contains all elements x:(log xt)q and 5(k) and which is invariant
under the operators defined by (2.1)-(2.9). We will rather use the following
equivalent characterization as a definition:

DEFINITION 2.1. The space PC consists of all finite linear combinations of the
elements

(2.26) %K) (k. z,, acR),

(2.27)  ee®™xC(log x ) (e € keZ, ac R, oe9),

(2.28)  ore ¥ (log x)¥ (a e C, ke Z,, be R, 6cS).
The class PC defined above is somewhat smaller than the preliminary class
in [7]1. This is done for convenience, but the results of this paper will remain
valid with respect to the larger class.
More structure can be given to PC by using the spaces OM of multipliers
for S and 0& of convolutors for P, as introduced by Schwartz [9]:
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(2.29) Oy = {f e S'[of ¢S for all o ¢ S3,

(2.30) Oé := {f e S' | ¢xf ¢ S for all ¢ « S}.

Note that all elements of OM are C”-functions and that OM = F(Oé), S$.8' ¢ Oé,

SxS' < OM. If fe OM’ g € S' then we can define Mfg = fg ¢ S' by
(2.31) <fg,¢> = <g,¢f>, ¢ € S,

and if f ¢ Oé, g ¢ S' then we define Cfg = fxg ¢ S' by

(2.32) <fxg,¢> = <g,¢*¥>, ¢ € S.
Now Tlet:
(2.33) PCM = PCn qw, PCC := PC n 0&.

PROPOSITION 2.2. PC = PCy + PC,3 PCy n PC, = S5 PCy 1s the linear span of the

elements given by (2.28); PCC is the linear span of the elements given by (2.27).

Thus PCC consists of piecewise ¢”-functions on R whith only finitely many
singularities around which they have a quite specific asymptotic behaviour
apparent from (2.26), (2.27). Furthermore, as x - + = they behave as rapidly
decreasing C”-functions. The space PCM can be characterized in a different way
as follows:

PROPOSITION 2.3. f e PCy if and only if f e C”(R) and, near + =, f is a linear
combination of functions

x e x| (Toglx) by (x),

where b ¢ R, a e @, ke Z andh « C”(R) with asymptotic expansion of the
form

(2.34) h.(x) ~

-J
c. x|, x vte.
t j=0 J,t

He~18

Here (2.34) means that for all n,m ¢ Z_ we have:
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n . I
(é%)m(hi(x) - -Zo “ tlxl_J) = 0()x] ™™y g x > 4 e
J= ’ —

3. A Product on PC

If fe PCM then Mf sends both PCM and PCC into itself. If f ¢ PCC’
g e PCM
meaning to f.g if both f and g are in PCC with common singular points. Similarly,

then we may define f.g as M_f. However, it remains a problem to give a

we can ask for the meaning of fxg if f,g ¢ PCM. There have been many attempts
in literature to find a reasonable definition for the product of two distribu-
tions on suitable subclasses (see for instance the references in [51). In our
opinion, the best definition for our purposes has been given by Keller [4]3, (5],
[6]. We will adapt his approach in order to define the product on PC.

The point of departure is an extension to PC of the evaluation functional
E, defined on S by (2.17).

DEFINITION 3.1. An evaluation functional E is a Tinear functional on PC such
that E(f)=f(0) if f ¢ PC and f is continuous at 0.

For each choice of E we can define an integration functional I on PC by
(3.1) I(f) := E(Ff), f e PC.

Then I(f) = f:, f(g)de if f ¢ PC n Ll(R). Note that we can fix any evaluation
functional E by an arbitrary choice for E(d(k)) (k € ZZ+), E(xi(]og xi)q)
(Reaso,oL;éO,quZ+ ora=0,0 <qel+), E(x » sign(x)).

The following theorem is closely related to Keller's results, cf. Theorem
4.3 in part O of [6].

THEOREM 3.2. For each choice of E there is a unique bilinear mapping
(f,g) > f.g: PC x PC > PC such that:

(1) f.g=Mgif fePCy, gePC;
(i1) f.(eq) = ¢(f.q) 1_1’_%3 €S, f, ge PC ((S)-semi-associativity);
(1i1) I(P(f.q)) = I(Ff.F *q) if f.g « PC (Parseval formula).

This mapping has the additional properties:

(iv) If f,g e PC are continuous at x then f.g is continuous at x and (f.g)(x) =
f(x)g(x);
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(v) D(f.g) = (Df).g + f.(Dg);

(vi) If fe PCM, g ¢ PC then f.g = g.f = Mfg‘
Now we can define a convolution product on PC (again depending on the

choice of E) by

-1

(3.2) fxq = F (FF.Fg), f.g e PC.

A large numbers of further remarks can be made:
a) If f,g e PCC then f.g as a linear functional on S is given by

1. .-1 ok
oxF "g)) = E(fx¢g), ¢ € S.

<f.g,¢> = I((FF)(F

b) If f,g,h ¢ PC and h(x) = f(x)g(x) at the common regular points x of f and g
then f.g - h is a finite linear combination of elements eaDd(k)

k e Z+, a is a singular point of f or g. Thus, in order to evaluate f.g it

is sufficient to compute the coefficients occurring in these finite linear

, where

combinations.

c) If f,g ¢ PC are boundary values in the sense of S' of analytic functions F,G,
respectively, on a strip {z « € |0 < Im z < b} then f.g is the boundary
value of FG. If f,g ¢ PC have support bounded away from-~ then fxg as defined
by (3.2) coincides with the usual convolution product for such distributions.

d) Whatever the choice of E may be, the multiplication on PC can never be
associative or commutative. For the nonassociativity this follows by the
example in Schwartz [91:

-1 -1

(6.x).x ~=0.x " =0#68=286.1=28.(xx").
For the noncommutativity observe that
x 1o = -E(x s £ E(xY)s - 50 = 6ux7L.

We may always pass to a commutative algebra with new product

\%

vV V.V vV Vv
fog := 3(f.g+(f.g) + g.f + (g.f) ),
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which no longer satisfies property (ii) of Theorem 2.2. Note that feg =
v
3(f.g+g.f) if E(f) = E(f) for all f ¢ PC.

The bilinear form (f,g) » I(f.g) on PC x PC is nondegenerate for each choice
of E. The Hermitian form

(f,g) + 3(1(f.g")+I(g*.F))

on PC x PC can never be positive definite. Indeed, for real-valued ¢ ¢ S
® 2
I((s+¢).(6+0)) = E(8) + 2¢(0) + [__ ¢(x)“dx

and, for given E, ¢ can always be chosen such that the right hand side is
negative.

There is no preferred choice of E. Indeed, starting with a given E, the

evaluation functionals Sé E and eTbXE (c>0, beR) defined by

(SLE)(F) := E(S.F), fePC,

(™) (F) = (™), £ < pe,
also satisfy Definition 3.1 and we have

(S¢E)(Tog|x]) = E(Tog|x|) + Tog c,

ey (x ) < g(xY) # b,

More generally, we may transform E by multiplication with a smooth function
which equals 1 at 0 or by a smooth transformation of the independent
variable which Teaves 0 fixed. Still we can impose an important restriction

on the freedom of choice for E such that this restriction is invariant under
all the above-mentioned transformations of E, namely:

3) E(s8)) - ok « Z,) and E6q7%) = 0(-a £ Z,, q < Z,).

In particular this will imply that s(K) s(&) = o for a11 Kop < Z,. From
now on we will assume that (3.3) holds.
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g) As pointed out by Keller [61, a particular nice choice for E is

-1
. -1 x| *
(3.4) E(f) := Res, oA TAC E(f*7zrr%735§§?x), f e PC,,

which is equivalent to the choice for I made in [71:

o -1
(3.5) I(g) := Resk=0 A

AC I(1x|7Mg)s g e Py
Note that (3.5) is in the spirit of the Hadamard finite part (cf. (2.23)).

4. A Canonical Product on the Dual of PC

In the previous section we introduced a far from canonical product on PC.
However, by using a simple extension principle first observed by Arens [11,
[2]*) we can define a canonical associative product on a suitable space of
linear functionals on PC.

Let V be an algebra over €, V' its algebraic 1inear dual space and V" its
bidual. Then we can define bilinear mappings
(¢,F) » of: V x V' > V',

(F,f) » Ff: V" x V' > V',
(F,G) » FG:z V" x V" = V" as follows:

(4.1) <pf,p> = <Foop>, Fe V', o0 eV,

(4.2) <Ff,y> = <F,fy>, F e V", feV', VeV,

(4.3) <FG,f> = <F,Gf>, F,Ge V', felV'.

V is naturally embedded in V" and the product on V" restricted to V gives back
the original product on V. If the product on V is associative then the same
holds on V", but if the product on V is commutative then this is not necessarily
true for the product on V" (cf. R. Arens [21). Of course, the above construction
remains true if V' is replaced by a subspace X of V' and V" by a subspace Y of
X', provided V x X ¢ X, Y x XX, Y xYcl¥.

Let us apply this construction to the case that V = 8, X = PC. Then

*jWe thank C.B. Huijsmans for providing us these references.
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(¢,F) = ¢f: S x PC = PC coincides with the usual action of S on PC. If f ¢ PC
then we can define an element Ff of PC' by

(4.4) <Feg> = I(f.g), ge PC.

0f course, the mapping f - Ff depends on the choice of E. Now it follows from
(4.2) that

(4.5) ng =f.g, f.ge PC,
and from (4.3) that Fng (f.g e PC) is the element of PC' defined by
(4.6) <Fng,h> = I{f.(g.h)), he PC.

Thus, if f,g ¢ PC then

(4.7) <FeF e

Fy h> = I(f.(g.h)-(f.q).h), h e PC.

g,
The Teft hand side of (4.7) vanishes whenever f and g are regular on the support
of h. In order to describe Fng—F]c g when acting on h with support on some of

the singularities of f and g we have to introduce some further elements of PC':

gl 0 (09 e, qez, asbe m), o{f) (kez,, q<R):

"

(4.8) <n£°‘1’:q),f> ;= coefficient of eani(log le)q in asymptotic series of

fas +(x-a) + 0,

(4.9) <nii’g),f> := coefficientof e_1bxxi(]og xi)q in asymptotic series of

fas x>t o,

k
(4.10) <9§k),f> := coefficient of 1'—'(1.L ea0s(K) 4 f.

(The normalisation in (4.8), (4.9) is slightly different from the one in [71.)
Now it is clear that Fng-Ff. is a (possibly infinite) linear combination of
elements of PC' of the type (4.8), (4.9), (4.10).

If F e PC' and A is one of the operators given by (2.1)-(2.9) then define
AF ¢ PC' by



Koornwinder/Lodder 161

(4.11) <AF,f>:=< F,A'f>, f e PC,

where <A'f,0> := <f,Ap> (fePC, ¢¢3S).

DEFINITION 4.1. Let the space SG6F of special generalised
functions censist of all finite 1inear combinations of the elements

(4.12) Fe(fePC)

(4.13) p,§=0 S .q ngf;p’q) (¢ g0 ac R, act),
(4.14) p,Z=0 g ”:(&Ztg’q) (c) qe0s be Ry acl),
(4.15) kzo ¢ eék) (¢ <C» a €R).

Note that an infinite sum like (4.13), when tested against an element of
PC, yields only finitely many nonzero terms.

THEOREM 4.2.

a) SGF is invariant under the operators inherited from (2.1)-(2.9).
b) SGF x PC < PC with product defined by (4.2).
)
)

c) SGF x SGF < SGF with product defined by (4.3).
d) The product on SGF is associative.

It might seem from Definition 4.1 that the definition of SGF depends on
the choice of E. However, we can define another embedding f - G of PC in PC',
not depending on E, as follows. If f has no singularities on [a,b] except
possibly at one interior point ¢ then put

1

- A
(4.16) <Gg,g) := Res, g 1 = AC <g, |x-c|*f>,

whenever g ¢ PC with support inside [a,bl. (Note that <g,|x—c|kf> is well-
defined for Rer sufficiently large because g is a distribution of finite order.)

Similarly, if f has no singularities at finite points in [a,=) then put

(4.17) <Gg>g> := Res, g vl ac <g,lx|_xf>
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whenever g « PC with support inside [a,). The definition of Gf as X » - » is
analogous to (4.17). Now, for each f ¢ PC, Fe-Ge is a finite linear combination
of elements of the form (4.13), (4.14), (4.15) and <Ff—Gf,h> =0 if h ¢ PC with
support outside the singularities of f.

Let the mapping F - fF of SGF onto PC be defined by

(4.18) <fpat> = <Fre>, 9 e S,

where at the right hand side ¢ is considered as an element of PC. This mapping
sends both Ff and Gf back to f and if satisfies

(4.19) fFng = f.g, f.ge PC.

Summarizing, we see that SGF is a much nicer algebra than PC. The reason
is that SGF has much more elements with point support ((4.13),(4.14),(4.15))
than PC (only (2.26)). These new elements admit enough freedom to carry informa-
tion in order to have a product which is associative, behaves nicely under
dilatation, and so on.

There is one final step to be made in order to get the full picture of
[71. In [7] the elements of PC and SGF live together in one bigger algebra of
generalised functions which we denote here by GF. We might
achieve this in our present approach by applying the construction of the
beginning of this section once more, such that the algebra now equals PC with
product obtained by a choice of E. Then we can realize both PC and SGF as
subalgebras of the dual of SGF: PC by putting <f,F> := <F,f> if f ¢ PC,

F e« SGF, and SGF by putting <F,G> := <FG,1> if F,G ¢ SGF. The details, in
particular a minimal choice of GF as a subspace of SGF', have yet to be worked
out.
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